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Evaluation of the external force term in the discrete Boltzmann equation
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A representation of the forcing term in the Boltzmann equation based on a Hermite expansion of the
Boltzmann distribution function in velocity phase space is derived. Based on this description of the forcing
term, a systematic comparison of previous lattice Boltzmann models describing a nonideal gas behavior is
given.[S1063-651X98)12010-X]

PACS numbgs): 47.11+j, 05.20.Dd, 02.70-c

It has recently been shown that a class of discrete-velocity 1 )
models(e.g. lattice Boltzmanncorrespond to the truncation w(§= D/Ze*g 2 4)
of the Boltzmann equation in an Hermite velocity spectrum (2m)

space[1]. In this paper, we extend the above mentioned

work to include an external force term in the Boltzmannanda™ is an nth-rank tensor obtained from the following

equation. We then examine two previous lattice Boltzmanrequation:

models, describing nonideal gas behavior, which relied on

assumptions for the functional form of forcing without rig-

orous proof. a(n):f fHM(&dE. (5
We start by briefly reviewing the basic equations in Ref.

[1] with the inclusion of a linear forcing term. The dimen- Note that the produc™# (™ denotes contraction on all the

;ionlg:-ss BoItzmann-BGK equation in an external accelerar-1 subscripts. As argued by Grél], expansior(3) is valid in
tion field F can be written as the sense of mean convergence provided that/?f is

of 1 square integrable. The distribution in E@) satisfies this

—+EVIHF-V f=——(f- ), (1)  condition when§<2. It was previously showfl] that the

gt T approximation made in the discrete velocity method corre-
sponds to the truncation of the Hermite expansion of the
distribution function when the discrete velocities chosen are
the notes of a Hermite quadrature. Further, this truncation
preserves the macroscopic hydrodynamics such as that de-
scribed by the Navier-Stokes equations.
f(o):Le*@*lﬂzl%, 2 Evaluating the ternF-V.f in the Hermite series repre-

(2mw6)P” sentation is straightforwar®]. Using the relation

where f is the velocity distribution,£ is the microscopic
velocity, 7is a relaxation parameter, afif’ is the following
Maxwellian distribution

whereD is the dimension of the spacejs the mass density,
u the fluid velocity, andd is a normalized temperature. The
velocities,& andu are in units ofco= VkgTo/mg, Wherekg

is the Boltzmann constant, arid, and my are units of the
temperature and the molecular mass, respectively. The ch
acteristic lengthL and timet, are free to choose, provided
they satisfy the relatioh/ty=c,. The relaxation timer and
the externally maintained acceleratiéh are therefore in f<xyf’t>:n20
units of ty and cqy/ty, respectively. The constamt, is the

sound speed in a gas consisting of particles of magand
at temperaturd,. The dimensionless temperatufds de-
fined asf=Tm,/Tym. Readers are referred to R¢L] for

oHM=(-1)"V}io, (6)

the Hermite expansion of the distribution function can be
apritten as

0

(—n"
n!

am gw, W)

and its gradient in velocity space is

] n joe)
more background and detail. f ) amyntl, = ina(n—l) (n)
The distribution functionf can be expanded in terms of ¢ ngo n! £ wnEl n! e
Hermite polynomialsH [2] in the following way: (8

The nth Hermite coefficient of the force ternk-V.f, is
simply nFa("™ %), where the product is a tensor product. Ex-
plicitly, the external forcing term in Eq1) can be written by
wherew is the weight function defined as follows: noting that due to the conservation of the mass and momen-

o1
fgh=0@2 A xOHDE,
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tum, the first two Hermite coefficients dfare alwaysa®  of Eq. (3), with the first three coefficients being pu, and

—p and ai(l):pui_ Also the components of the first and puu+(6—1)pé. Therefore to second order, we have
second Hermite polynomials affM=¢ and 1)=& fe9= wp{1+ (u+ 7F)H D

— &jj [2] so that we may write
F-Vf=—polF-(§&-W+(F-Hu-H+1 (O

where we have kept terms explicitly up to second order.
Note, the Hermite representation preserves the correct

+3 [uu+ 7uF+ 7Fu+(6—1) 811 ?}

2
—TOp,u+7F,0)~ “[(F-§2-F?], (13

moments associated with the forcing term: wheref(© is the Maxwellian distribution truncated to second
order and the last term would serve as a correction to the
F.V,fdé=0, 10 model of Shan and Chen.
f ffdg (103 A more recent model of Het al. [4] proposed that the

interaction between fluid particles could be modeled as an
) __ external force in the Boltzmann equation using a mean-field
f §F- V. fdg=—pF, (109 approximation[4]. This approach involved the approxima-
tion, without proof, of substituting the distribution function
) _ in the force ternjEq. (1)] with its equilibrium value, e.g., the
j §EF-V,fdé p(FutuF). (109 local Maxwellian distribution. We find thdt- V .f is identi-

N _ _ cal to F-V,f(® up to second order because the first two
In fact, the correct coefficients for the Hermite expansion Ofyyermite coefficients of the distribution function are always

the forcing term can also be determined, without expliCityye same as those in the local Maxwellian distribution.
calculation of the velocity gradient, by taking proper mo- i s interesting that an earlier approach to solve the Vla-
ments of the forcing term and using the orthogonality prop-qy equation with forcing adopted a Fourier-Hermite expan-
erties of the Hermite f“UCt'O”.S- . . sion of the distribution functiof5]. Utilizing the recursion

To make a connection with discrete lattice Boltzmannyqnerties of Hermite polynomials an infinite set of first or-
models[1] note that the lattice Boltzmann distribution func- yer nonlinear difference equations for the Fourier expansion
tion f; is represented ag=w;/w(£)f(§), wherew; are  coefficients is obtained. Truncating high order terms, a finite
weights associated with the Gaussian quadratﬁr'e; the  system of equations is integrated forward in time to obtain
distribution function truncated to a specified order in thethe Fourier coefficients of the distribution function.
Hermite spectrum space, agdare discrete velocities asso-  The approach described in this paper may also have ap-
ciated with the Hermite quadrature. We may then immediPplication in problems describing strong interactions where
ately write down the discrete Boltzmann representation ohigher powers of the forcing appear. Recall that the linear
the forcing term in Eq(9) by replacingw(é) with w; and&  forcing in Eq.(1) results from the first order expansion of the
with & . distribution function. A higher order expansion gives

We now compare this model to two previous proposed _ 1
lattice Boltzmann models that incorporate forcing. One FEFR) =1 TRV T2FFVeVef(g+---.
model due to Shan and ChdB], describing a nonideal (14)

gas, incorporated interparticle forces by adding an extra mogjearly the higher order velocity derivatives are readily
mentum in the equilibrium distribution functiofji.e.,  evaluated in terms of Hermite polynomials although care
fO(p,u,0)—(p,u+ 7F,0)]. To make a connection with  should be taken to maintain the same order of approximation
this model we first note that E(‘l) can be written in the in Hermite spectrum space. We note that Chapman and
fO”OWing form, in which the effect of the external force is Cowhng [6] describe a similar form of the forcing term for

formally absorbed into the equilibrium distribution: the case of electrons in a strong electric field, however, a
of 1 clear_c_onnection betwgen the velpcity gradient terms and the
—+EVE=—Z(f—fe9), (11  coefficients of expansion found in R¢6] was not estab-

Jt T lished.
In summary, starting from the continuum Boltzmann-
where BGK equation we have obtained a representation for the ve-
=g locity gradient term based on a Hermite polynomial expan-
=04 7> —npFa" VM, (12)  sion of the velocity distribution function. As a result, we can
n=1 N easily derive the forcing term in a self-consistent fashion to

any order in Hermite polynomials for use in discrete Boltz-

When solving the Boltzmann-BGK equation at discretemann models. This systematic procedure should be of benefit
velocities we effectively restrict the distribution function in a computer modelers of complex fluids.

subspace spanned by the leading Hermite polynomials so

that the equilibrium distribution functiorf$® has to be trun- Nicos S. Martys would like to acknowledge partial sup-
cated in the Hermite spectrum space accordingly. We noticport from the National Institute of Standards and Technology
that the Maxwellian distribution can be expanded in the formCenter for Theoretical and Computational Materials Science.
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