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Evaluation of the external force term in the discrete Boltzmann equation
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A representation of the forcing term in the Boltzmann equation based on a Hermite expansion of the
Boltzmann distribution function in velocity phase space is derived. Based on this description of the forcing
term, a systematic comparison of previous lattice Boltzmann models describing a nonideal gas behavior is
given. @S1063-651X~98!12010-X#

PACS number~s!: 47.11.1j, 05.20.Dd, 02.70.2c
ci
n
m
e
nn
n
o
-

ef
-
r

,
e

h
d

f

g

e

re-
the
are
tion
t de-

-

be

x-

en-
It has recently been shown that a class of discrete-velo
models~e.g. lattice Boltzmann! correspond to the truncatio
of the Boltzmann equation in an Hermite velocity spectru
space@1#. In this paper, we extend the above mention
work to include an external force term in the Boltzma
equation. We then examine two previous lattice Boltzma
models, describing nonideal gas behavior, which relied
assumptions for the functional form of forcing without rig
orous proof.

We start by briefly reviewing the basic equations in R
@1# with the inclusion of a linear forcing term. The dimen
sionless Boltzmann-BGK equation in an external accele
tion field F can be written as

] f

]t
1j•“ f 1F•“j f 52

1

t
~ f 2 f ~0!!, ~1!

where f is the velocity distribution,j is the microscopic
velocity,t is a relaxation parameter, andf (0) is the following
Maxwellian distribution

f ~0!5
r

~2pu!D/2
e2uj2uu2/2u, ~2!

whereD is the dimension of the space,r is the mass density
u the fluid velocity, andu is a normalized temperature. Th
velocities,j andu are in units ofc05AkBT0 /m0, wherekB
is the Boltzmann constant, andT0 and m0 are units of the
temperature and the molecular mass, respectively. The c
acteristic lengthL and timet0 are free to choose, provide
they satisfy the relationL/t05c0 . The relaxation timet and
the externally maintained accelerationF are therefore in
units of t0 and c0 /t0 , respectively. The constantc0 is the
sound speed in a gas consisting of particles of massm0 and
at temperatureT0 . The dimensionless temperatureu is de-
fined asu5Tm0 /T0m. Readers are referred to Ref.@1# for
more background and detail.

The distribution functionf can be expanded in terms o
Hermite polynomialsH @2# in the following way:

f ~x,j,t !5v~j! (
n50

`
1

n!
a~n!~x,t !H ~n!~j!, ~3!

wherev is the weight function defined as follows:
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v~j!5
1

~2p!D/2
e2j2/2, ~4!

and a(n) is an nth-rank tensor obtained from the followin
equation:

a~n!5E fH ~n!~j!dj. ~5!

Note that the producta(n)H (n) denotes contraction on all th
n subscripts. As argued by Grad@2#, expansion~3! is valid in
the sense of mean convergence provided thatv21/2f is
square integrable. The distribution in Eq.~2! satisfies this
condition whenu,2. It was previously shown@1# that the
approximation made in the discrete velocity method cor
sponds to the truncation of the Hermite expansion of
distribution function when the discrete velocities chosen
the notes of a Hermite quadrature. Further, this trunca
preserves the macroscopic hydrodynamics such as tha
scribed by the Navier-Stokes equations.

Evaluating the termF•“j f in the Hermite series repre
sentation is straightforward@2#. Using the relation

vH ~n!5~21!n
“j

nv, ~6!

the Hermite expansion of the distribution function can
written as

f ~x,j,t !5 (
n50

`
~21!n

n!
a~n!¹j

nv, ~7!

and its gradient in velocity space is

¹j f 5 (
n50

`
~21!n

n!
a~n!¹j

n11v52v (
n51

`
1

n!
na~n21!H ~n!.

~8!

The nth Hermite coefficient of the force term,F•¹j f , is
simply nFa(n21), where the product is a tensor product. E
plicitly, the external forcing term in Eq.~1! can be written by
noting that due to the conservation of the mass and mom
6855 © 1998 The American Physical Society
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tum, the first two Hermite coefficients off are alwaysa(0)

5r and ai
(1)5rui . Also the components of the first an

second Hermite polynomials areH i
(1)5j i andH i j

(2)5j ij j

2d i j @2# so that we may write

F•¹j f 52rv@F•~j2u!1~F•j!~u•j!1•••#, ~9!

where we have kept terms explicitly up to second order.
Note, the Hermite representation preserves the cor

moments associated with the forcing term:

E F•¹j f dj50, ~10a!

E jF•¹j f dj52rF, ~10b!

E jjF•¹j f dj52r~Fu1uF!. ~10c!

In fact, the correct coefficients for the Hermite expansion
the forcing term can also be determined, without expl
calculation of the velocity gradient, by taking proper m
ments of the forcing term and using the orthogonality pro
erties of the Hermite functions.

To make a connection with discrete lattice Boltzma
models@1# note that the lattice Boltzmann distribution fun
tion f i is represented asf i[v i /v(j) f̃ (ji), where v i are
weights associated with the Gaussian quadrature,f̃ is the
distribution function truncated to a specified order in t
Hermite spectrum space, andji are discrete velocities asso
ciated with the Hermite quadrature. We may then imme
ately write down the discrete Boltzmann representation
the forcing term in Eq.~9! by replacingv~j! with v i andj
with ji .

We now compare this model to two previous propos
lattice Boltzmann models that incorporate forcing. O
model due to Shan and Chen@3#, describing a nonidea
gas, incorporated interparticle forces by adding an extra
mentum in the equilibrium distribution function@i.e.,
f (0)(r,u,u)→ f (0)(r,u1tF,u)]. To make a connection with
this model we first note that Eq.~1! can be written in the
following form, in which the effect of the external force
formally absorbed into the equilibrium distribution:

] f

]t
1j•¹ f 52

1

t
~ f 2 f eq!, ~11!

where

f eq5 f ~0!1tv (
n51

`
1

n!
nFa~n21!H ~n!. ~12!

When solving the Boltzmann-BGK equation at discre
velocities we effectively restrict the distribution function in
subspace spanned by the leading Hermite polynomials
that the equilibrium distribution function,f eq, has to be trun-
cated in the Hermite spectrum space accordingly. We no
that the Maxwellian distribution can be expanded in the fo
ct

f
t

-

i-
f
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so

e

of Eq. ~3!, with the first three coefficients beingr, ru, and
ruu1(u21)rd. Therefore to second order, we have

f eq5vr$11~u1tF!H ~1!

1 1
2 @uu1tuF1tFu1~u21!d#H ~2!%

5 f̃ ~0!~r,u1tF,u!2
vrt2

2
@~F•j!22F2#, ~13!

where f̃ (0) is the Maxwellian distribution truncated to secon
order and the last term would serve as a correction to
model of Shan and Chen.

A more recent model of Heet al. @4# proposed that the
interaction between fluid particles could be modeled as
external force in the Boltzmann equation using a mean-fi
approximation@4#. This approach involved the approxima
tion, without proof, of substituting the distribution functio
in the force term@Eq. ~1!# with its equilibrium value, e.g., the
local Maxwellian distribution. We find thatF•¹j f is identi-
cal to F•¹j f (0) up to second order because the first tw
Hermite coefficients of the distribution function are alwa
the same as those in the local Maxwellian distribution.

It is interesting that an earlier approach to solve the V
sov equation with forcing adopted a Fourier-Hermite exp
sion of the distribution function@5#. Utilizing the recursion
properties of Hermite polynomials an infinite set of first o
der nonlinear difference equations for the Fourier expans
coefficients is obtained. Truncating high order terms, a fin
system of equations is integrated forward in time to obt
the Fourier coefficients of the distribution function.

The approach described in this paper may also have
plication in problems describing strong interactions whe
higher powers of the forcing appear. Recall that the lin
forcing in Eq.~1! results from the first order expansion of th
distribution function. A higher order expansion gives

f ~j1F!5 f ~j!1Fi¹j i
f ~j!1 1

2 FiF j¹j i
¹j j

f ~j!1••• .
~14!

Clearly the higher order velocity derivatives are read
evaluated in terms of Hermite polynomials although ca
should be taken to maintain the same order of approxima
in Hermite spectrum space. We note that Chapman
Cowling @6# describe a similar form of the forcing term fo
the case of electrons in a strong electric field, howeve
clear connection between the velocity gradient terms and
coefficients of expansion found in Ref.@6# was not estab-
lished.

In summary, starting from the continuum Boltzman
BGK equation we have obtained a representation for the
locity gradient term based on a Hermite polynomial expa
sion of the velocity distribution function. As a result, we ca
easily derive the forcing term in a self-consistent fashion
any order in Hermite polynomials for use in discrete Bol
mann models. This systematic procedure should be of be
to computer modelers of complex fluids.
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